
A new integrable gravitational billiard

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 45

(http://iopscience.iop.org/0305-4470/24/1/015)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 10:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 24 (1991) 45-52. Printed in the U K  
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Abstract. We discuss gravitational billiards, i.e. the two-dimensional motion of a paint 
mass inside a hard boundary curve under the influence of a constant (e.g. gravitational) 
field. A parabolic boundary is shown to be a new example of integrable billiards. The 
system has a second integral of motion in addition to the energy, which is constructed 
analytically. Stability and bifurcation properties ofthe central periodic orbits arc discussed. 
the results also shed new light on the known integrable care of elliptic non-gravitational 
billiards. 

1. Introduction 

The dynamics of Hamiltonian systems is nicely illustrated by the so-called billiard 
systems: a point mass reflected elastically from a boundary curve in a two-dimensional 
plane. Such billiard systems have often been studied (e.g. see Arvieu and Ayant 1987, 
Arvieu et a/ 1987, Ayant and  Arvieu 1987, Benettin and  Strelcyn 1978, Berry 1981, 
1983, Berry and Robnik 1986, Crespi er a/ 1989, Keller and Rubinov 1960, Korsch 
and Jodl 1991, Korsch er a/ 1987, Lehtihet and  Miller 1986, Mirbach and  Korsch 1989, 
Poritzky 1950, Richter et a/  1990, Robnik 1983, 1986, Saito et a /  1982) because they 
offer various advantages over motion in continuous potential fields: the dynamics 
reduces in an  obvious way to an iterated map between successive collisions with the 
boundary. This mapping can be quite easily constructed numerically or  even analytically 
and it is not necessary to integrate differential equations and  the discrete Poincare 
maps appear almost naturally. 

Ordinary billiards 

The dynamics of a particle moving freely o n  a two-dimensional plane billiard table 
bounded by a closed convex boundary curve has been well studied (e.g. see Berry 
1981, Korsch and Jodl 1991, Korsch et a/ 1987; references to the special case of 
kolygonal billiards can be found in the papers by Berry (1981) and Mirbach and 
Korsch (1989)). Smooth billiards (i.e. bounded by a curve with a continuously turning 
tangent) show the generic behaviour of mixed regular and chaotic dynamics. The 
stadium billiard has been proven to be ergodic (Bunimovich 1974, 1979; see also Berry 
1981). A single smooth billiard has been shown to be integrable: the elliptic one (for 
any value of the eccentricity). A second constant of motion has been explicitly 
constructed by Berry (1981), which can be rewritten as the product of the angular 
momenta about the two focal points of the ellipse (this interpretation is due to 
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J H Hannay, as cited by Berry (1981) (see also Arvieu el a/  1987); a simple proof can 
be found in Korsch and Jodl (1991) and Korsch et a/  (1987)). Strong evidence has 
been obtained by Poritzky (1950) supporting the conclusion that the elliptic boundary 
is the on/y integrable case. A generic distortion of the elliptic billiard leads to generic 
chaotic dynamics. A theorem by Lazutkin (1973) proves that billiards with sufficiently 
smooth (Css')  boundaries possess orbits which envelop caustics, which means that 
these billiards cannot be ergodic (see also Berry 1983). 

H J Korsch and J Lang 

Gravitational billiards 

The dynamics of a falling body in a symmetric wedge under the influence of a constant 
force has been studied in detail by Lehtihet and Miller (1986) (see also the available 
computer programs for an interactive study of these system by Miller and Lehtihet 
(1990) or Korsch and Jodl (1991)). This system constitutes the prototype of a gravita- 
tional billiard, described by the Hamiltonian (mass= 1) 

H = f(p: +p:) + gy 
with g a 0  and a boundary curve 

Y =f (XI (2) 
which restricts the motion of the particie to the region y *f(x). At the boundary we 
have elastic reflection. In contrast to the ordinary billiards discussed above, the 
boundary is usually not closed. The symmetric wedge is given by the boundary 

f ( x )  = blxl. (3 )  
In the limits b + 0 and b + m the wedge billiard is integrable. Another integrable case 

the wedge. For angles 1 < b < CO the dynamics is generic, i.e. we find KAM-like behaviour, 
which undergoes fascinating bifurcations when b is varied. For any b in O <  b < 1 the 
dynamics seems to be completely chaotic, suggesting K-system behaviour (Lehtihet 
and Miller 1986). The untypical embedding of the integrable case at the boundary 
between the generic and the completely chaotic regime is due to the non-differentiability 
nf ?he baxx!a:y zt x = 0. 

n --.._- Fnr h- 1 ..,h--- thn I..-+-- :I -a..o--!-L :- Pa4- - : - -  ---_A:..-&-- -rrh -"--- I f- 
"CCULI I", v - I ,  W I l b l L  L l l r  "JJ'C"1 12 "CpU' lU 'C 111 b P L L * J I I I I I  CUUI"III~_LCJ U 1 L " " 6 " L L ' l 1  L U  

2. Smooth gravitational billiards 

The wedge gravitational billiard offers little flexibility because it depends only on a 
single parameter, b. The other parameters (the force g and the energy E)  can be 
removed by a scaling transformation. Here we discuss billiards with a smooth ( C ' )  
boundary f(x) .  In particular we choosef (x)s f (O)=O andf'=(O)=O. 

In most simple terms the dynamics can be described by the bounce mapping 

( -  ..) r h -  A:-.,+-.. -T+hn .-nl l ;c ;nm --in+ ( n  n 1 niD the m m n n n m n t e  
' , G , C  \ n , y ,  " C l l U L C  L l l L  ~ U " I " I I I P , L D  "1 L..L C"II.IIV.I y".,,,, , f r \ , f r , ,  "lr LI.* -"...p"..b.*.= 

of the momentum immediately after the collision with the boundary and the primed 
quantities are the data of the subsequent collision with the boundary. The mapping B 
can be decomposed as 

B = R a C  (5) 
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where the collision map C maps a collision point with the boundary onto the next 
one. R describes the elastic reflection at  the boundary curve. 

The collision map C is given by the next intersection of the parabolic trajectory 
of the particle in the ‘gravitational’ field 

with the boundary curve f(x) .  The (numerical) solutlon of 

y ( x ’ )  =f(x‘) = y ’  (7)  
determines the next collision point (x’, y’). The momenta immediately before the 
collision with the boundary are given by 

p :  = Px 

For the case of the wedge boundary, equation (3) ,  the collision map can be given in 
closed form (Lehtihet and Miller 1986). The same can be achieved for the ‘parabolic 
well’ 

f ( x )  =fax’. (9) 
A short calculation gives 

The refieaiox map R can be ZDS! ea:i!y s:a:ed In :e;ms of :he :angen:ia! and noiiiia: 
momenta 

with N = (1 +f”)-”* and J’= (df/dx)(x). The reflection R at point (x’, y’), p ,  +p, ,  
pn -f -p*; giver (rewritten in terms of the momCn!;l ,LIc, py) 

( ; L ) = N &  N _  +)(Ppi) 2f’ 

with N,=l* f ’ ’  withf’=df/dx(x‘). Equations (7) ,  (8) and (12) define the bounce 
mapping B. 

The dynamics can be completely recorded by the Poincart map M, which relates 
the x coordinates and the tangential momenta at subsequent collisions with the 
boundary 

The y values can be reconstructed from equation (2). and p .  is given by conservation 
of energy (note that p .  is always positive); p.y and p? are then determined by the inverse 
of the rotation (11). Figure 1 shows an example of the iterated map (13) for the 
boundaryf(x) =fax’+$ dx4 (g = 1 ,  energy E = 20) with a distorted parabolic boundary 
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Figure I.  PoincarC map M for the gravitational billiard f (x)=ax2/2+dx4/4  (a=O.2, 
d = 4 x  IO-’, g =  I ,  E =20), showing generic KAM-like behaviour. 

( a  =0.1, d = lo-’), displaying generic KAM-like behaviour. We note that energy con- 
servation restricts the ( x ,  p,):  values to the region 

; p p : + g f ( x ) s E .  ( 14) 

p:+ gax2 = 2 E. (15) 
Figures 2 ( a - c )  show the action of the Poincark map M for the parabolic billiard (9) 
(again we choose g = 1 and energy E = 20) for three values of the parameter a :  0.001 
( a ) ,  0.02 ( b ) ,  0.1 ( c ) .  We note that all points seem to lie on invariant curves (even 
after the central fixed point has become unstable), strongly suggesting integrability of 
the system. 

Because off(0) = 0 the gravitational billiards have a central periodic orbit starting 
vertically at x = 0, i.e. (x, p , )  = (0,O) is a fixed point of the mapping M. The stability 
of this orbit can be easily discussed: linearization of M in the vicinity of  (0,O) gives 

For the parabolic billiard (9) this is the interior of the ellipse 

X 

Figure 2. PoincarC map M for the gravitational parabolic billiard f (x )  = ax’I2 for g = I ,  
E =20 and three values of a :  0.002 ( a ) ,  0.04 ( b )  and 0.2 ( e ) .  The dynamics is integrable. 
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where we have introduced the radius of curvature R = l / j ” (O)  of the boundary curve 
at x=O, the maximum height h =  E / g  and 8 * = 2 h / g  (compare also Berry 1981, 
equation (19) for the ordinary billiard). The stability of the fixed point is determined 
by the eigenvalues of the linearized mapping M,, where stability is associated with 
complex eigenvalues on the unit circle, i.e. 

(17) 
21 1 - (4h/ R)I < 2 i 21 1 - ( 4 h / R ) l >  2 

(stable) 
(unstable) 

ITr M,I = 

(note that det M,= 1). Hence the vertical bounce orbit is unstable for heights exceeding 
the critical height h,= R / 2 .  Note that for the case of the parabolic billiard (9) the 
critical point (0, h,) = (0, 1 / 2 a )  is identical to the focal point of the parabola. For 
h > h, (i.e. E > gh,) a stable orbit (a  parabola) appears, which encloses the focal point 
(see figure 3). This new periodic orbit remains stable for all energies, whereas for 
billiards deviating from t h e  parabolic form rtahility is lost with increasing energy~ For 
the case shown in figures 2 ( a - c )  (g = 1, E = 20, various values of Q )  we find a critical 
value of a, =0.025 in agreement with the numerical observations. 

X 

Figure 3. Stable (-) and unstable (---) periodic orbits for h >  h,. The dot marks the 
focal point. 

3. An integrable billiard 

The parabolic gravitational billiard is indeed a second example of a smooth integrable 
billiard. This can be easily proved by constructing the second integral of motion. We 
first observe that the integrai must be invariant with respect to both ihe coiiision map 
C and the reflection map R. 

It is well known that a superposition of a central c / r  field and a constant field in 
the y direction 

H,= H + c / r  (18) 
has a” addi!lot?a!   on st an! of motion (a generalization of the Lenz-Runee vector for 
the pare c / r  field). Choosing the centre of the c / r  field at (0,y,,) on the y axis, this 
constant of motion reads 
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(Landau and Lifshitz 1976, Helfrich 1972), where z = y - y o  is the distance from the 
centre. In the following it will be shown that for the case yo = 1/2a, i.e. when the centre 
of the force coincides with the focal point of the boundary parabola, the parabolic 
billiard will be integrable. It remains to be shown that the integral G of the free 
gravitational motion is also an invariant of the reflection map R. First we note that 
during the action of R all position coordinates remain constant. Hence the only part 
of interest is the quantitity 

(20) 

It is convenient to rewrite T in terms of the tangential and normal momenta (see 
equation (11)) as 

H I  Korsch and J Lang 

7 = P~Y(ZPX - xPy). 

7 = N2{(2-Xf)p:+f( Z f +  X ) P : - [ 2 Z f + X (  1 -f2)]ptp.). (21) 

2zf+x(l-f2) = 0 (22) 

W i t h f = a x  and z=y-1 /2a=fax2-1 /2a  we find 

and hence 

which is clearly unchanged by the reflection p,+p,, pn+-pn.  
Conversely equation (22) reads, after introducing z(x) =y-y,,=f(x)-y, ,  

x2‘2 = 222’ - x = 0. (24) 

This differential equation is well known (Kamke 1977) and has the unique solution 

(25) 2 1  z (x)=fnx -- 
2a 

i.e. the parabolic billiard (9) is the only integrable billiard with integral (19). It is still 
an open question, however, whether the parabolic billiard is the only existing gravita- 
tional billiard with a smooth boundary. 

Note that for c = 0 we have exactly the parabolic gravitational billiard above. 
The contour lines of the invariant G at fixed energy 

(assuming a case without a c / r  field), i.e. 

are in agreement with the numerically calculated invariant curves shown in  figures 
2 ( a - c ) .  We can also derive the periodic orbits (the fixed points of the iterated map 
Mk) from the extrema1 points of C(x,p,): for E <g/2a G(x, p,) has a single minimum 
at the origin (x  =0, p,=O), which turns into a saddlepoint for E >  g/2a and two new 
minima appear at ( x , p , ) = ( i x m r  0) with xm=(aE/g - i )”2 /a .  The minima of G are 
stable fixed points, the saddlepoint is unstable. These are the only fixed points for the 
parabolic billiard. 
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4. Concluding remarks 

It has been shown that the parabolic gravitational billiard (with an additional Coulomb 
field centred in the focal point of the boundary parabola) is integrable. This is directly 
related to separability of the problem in parabolic coordinates (see e.g.) Landau and 
Lifshitz 1976, Helfrich 1972). It is now interesting to note that use of the closely related 
elliptic coordinates (e.g. as discussed in Morse and Feshbach 1953) directly leads to 
separability of the (non-gravitational) elliptic billiard 

( ;)2 + ( i)2 = 1 

which is therefore integrable (see introduction). A second integral of motion is the 
product of angular momenta about the two focal points (Berry 1981, Arvien et a1 1987, 
Korsch and Jodl, 1991, Korsch et a1 1987): 

~ = ~ , ~ ~ = ~ ( ~ + e ) p , . - y ~ ~ l ~ ( x - e ) p , - y ~ ~ l  (29) 
where e = ( A 2 -  B2)1'2 is the distance of the focal points from the centre. It immediately 
follows that F can be rewritten as 

F = ~ $ ; -  L' (30) 
where L = xpv -yp, is the angular momentum about the centre of the ellipse. This is 
identical to the well-known invariant (Erikson and Hill 1949, Helfrich 1972, Landau 
and Lifshitz 1976) 

F = Y $ : -  L ~ + Z ~ J J ( C ,  COS(@,)+C, COS(@,)) (31)  
for the two-centre Coulomb field 

c, c2 V ( x , y ) = - + - .  
V I  r2 

Here r, and r2 are the distances from the two centres, which are placed symmetrically 
at +e on the x axis and e,, O2 are the angles between the focal rays and the x axis. 
The case cI = c2 = 0 reduces to the ordinary elliptic billiard. 
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